Performance

User Interface

flopt.performance.compute(datasets, solvers='all', timelimit=None, msg=True, save_prefix=None, **kwargs)[source]

Measure the performance of (dataset, solver)

Parameters
  • datasets (list of Dataset or Dataset or Problem) – datasets

  • solvers (list of solvers or solver) – solvers

  • timelimit (float) – timelimit

  • msg (bool) – if true, then display log during solve

  • save_prefix (str) – the path in which each log is saved

Returns

logs; logs[solver.name, dataset.name, instance.name] = log

Return type

dict

Examples

We calculate the performance of (dataset, solver).

import flopt

# datasets
tsp_dataset = flopt.performance.get_dataset("tsp")
func_dataset = flopt.performance.get_dataset("func")

# compute the performance
logs = flopt.performance.compute([func_dataset, tsp_dataset], timelimit=2, msg=True)

# visualize the performance
log_visualizer = flopt.performance.LogVisualizer(logs)
log_visualizer.plot()

We can select the solver to calculate the performance.

rs_solver = flopt.Solver("Random")

# compute the performance
logs = flopt.performance.compute(
    [func_dataset, tsp_dataset],  # dataset list
    [rs_solver],  # solver list
    timelimit=2,
    msg=True
)

# visualize the performance
log_visualizer = flopt.performance.LogVisualizer(logs)
log_visualizer.plot()

We can use user defined problem as dataset

# prob is user defined problem
flopt.performance.compute(prob, timelimit=2, msg=True)
class flopt.performance.LogVisualizer(logs=None)[source]

Log visualizer from logs.

We input logs by constructor or loading from performance directory.

Parameters

logs (dict) – logs[dataset, instance, solver_name] = log

Examples

log_visualizer = LogVisualiser()
log_visualizer.load(
    solver_names=['Random', '2-Opt'],
    datasets=['tsp']
)
log_visualizer.plot()
load_log(solver_name, dataset, load_prefix='/home/docs/checkouts/readthedocs.org/user_builds/flopt/checkouts/latest/flopt/../performance')[source]

load log pickle file from load_prefix/solver_name/dataset/instance/log.pickle

Parameters
  • solver_name (str) – solver name

  • dataset (str) – dataset name

  • load_prefix (str) – log saved path

plot(xitem='time', yscale='linear', plot_type='all', save_prefix=None, col=2)[source]

plot all logs

Parameters
  • xitem (str) – x-label name. ‘time’ or ‘iteration’

  • yscale (str) – linear or log

  • plot_type (str) – all: create figures for each dataset. each: create figures for each instance. noshow: do not create figures.

  • col (int) – #columns of figure

stat(time=None, iteration=None)[source]

display static information

Parameters
  • time (int or float) – summary logs whose time less than time

  • iteration (int) – summary logs whose iteration less than iteration

class flopt.performance.CustomDataset(name='CustomDataset', probs=[])[source]

Creaet Dataset

Parameters
  • name (str) – dataset name

  • probs (list of Problem) – problems

Examples

We have a problem with the compatibility of the solvers.

import flopt
from flopt import Variable, Problem, Solver
from flopt.performance import CustomDataset

a = Variable('a', lowBound=2, upBound=4, cat='Continuous')
b = Variable('b', lowBound=2, upBound=4, cat='Continuous')

prob = Problem()
prob += a + b

We calculates the performance of (solver, problem) by using CusomDataset

cd = CustomDataset(name='user')
cd += prob  # add problem

Then, we run to calculate the performance.

flopt.performance.compute(cd, timelimit=2, msg=True)

After that, we can see the performace each solver.

flopt.performance.performance(cd)

We can select the solvers to calculate the performance.

rs_solver = Solver('Random')
tpe_solver = Solver('OptunaTPE')
cma_solver = Solver('OptunaCmaEs')
htpe_solver = Solver('Hyperopt')

logs = flopt.performance.compute(
    cd,  # dataset or dataset list
    [rs_solver, tpe_solver, cma_solver, htpe_solver],  # solver list
    timelimit=2,
    msg=True
)

# visualize he performance
log_visualizer = flopt.performance.LogVisualizer(logs)
log_visualizer.plot()

Datasets

class flopt.performance.BaseDataset[source]

Base Dataset

createProblem(solver)[source]

Create problem according to solver

create_instance(instance_name)[source]

defined each dataset

Parameters

instance_name (str) –

Returns

  • BaseInstance

  • .. note:: – The formulation is changed by algorithm of solver

genInstances()[source]

generator of function instance

class flopt.performance.tsp_dataset.TSPDataset[source]

TSP Benchmark Instance Set

Parameters

instance_names (list) – instance name list

createInstance(instance_name)[source]
Return type

TSPInstance

class flopt.performance.func_dataset.FuncDataset[source]

Function Benchmark Instance Set

Parameters

instance_names (list) – instance name list

createInstance(instance_name)[source]

create FuncInstance

class flopt.performance.mip_dataset.MipDataset[source]

MIP Benchmark Instance Set

Parameters

instance_names (list) – instance name list

createInstance(instance_name)[source]
Return type

MipInstance

External Interface

Compute and view the performance of (dataset, algo).

Compute Performance

python compute_performance.py algo save_algo_name --datasets datasetA datasetB  --params param_file
  • algo is the algorithm, we select algorithm from flopt.Solver_list().

  • The result of compute the performance is save in ./performance/save_algo_name/dataset_name/instance_name/log.pickle.

  • dataset can be select from flopt.Dataset_list().

  • param_file’s format is parameter = value, for example, as follows.

n_trial = 10000
timelimit = 30

Example for running the script.

python compute_performance.py 2-Opt 2-Opt_timelimit30 --datasets tsp  --params default.param
python compute_performance.py RandomSearch RandomSearch_iteration100  --datasets tsp  --params default.param
python compute_performance.py OptunaCmaEsSearch OptunaCmaEsSearch --datasets func --params default.param
compute_performance.compute(algo, dataset_names, params)[source]

compute the peformance of (dataset, algo). log data is saved ./performance/algo/dataset/instance/log.pickle

Parameters
  • algo (str) – algorithm name

  • dataset_names (list of str) – dataset names

  • params (dict) – parameters

View Performance

python view_performance.py --algo algoA algoB  --datasets datasetA datasetB
python view_performance.py --algo algoA algoB  --datasets datasetA datasetB --xitem iteration
  • The result of compute the performance is save in ./performance/algo/dataset_name/instance_name/log.pickle.

  • dataset can be select from flopt.Dataset_list().

  • xitem can be choised from ‘time’ or ‘instance’.

Example for running the script.

python view_performance.py --algo 2-Opt_timelimit30
python view_performance.py -- datasets tsp
view_performance.view_performance(algos, dataset_names, xitem, yscale, plot_type, save_prefix, time, iteration, load_prefix)[source]

display the log (dataset, algo). log data is laod from ./performance/algo/dataset/instance/log.pickle

Parameters
  • algos (list of str) – algorithm name

  • dataset_names (list of str) – dataset names

  • xitem (str) – x-label item of fiture. ‘time’ or ‘iteration’

  • yscale (str) – linear or log

  • plot_type (str) – ‘all’ or ‘each’

  • save_prefix (str) – save figure {save_prefix}instance_name.pdf

  • time (int or float) – summary logs whose time less than time

  • iteration (int) – summary logs whose iteration less than iteration

  • load_prefix (str) – prefix of load logs

flopt.performance.performance(datasets, solver_names=None, xitem='time', yscale='linear', plot_type='all', save_prefix=None, time=None, iteration=None, load_prefix=None)[source]

plot performance of each (dataset, algo) where algo is solver.name

Parameters
  • datasets (list of Dataset or a Problem) – datasets name

  • solver_names (list of str) – solver names

  • xitem (str) – x-label item of figure (time or iteration)

  • yscale (str) – linear or log

  • plot_type (str) – all: create figures for each dataset. each: create figures for each instance. noshow: do not create figures.

  • save_prefix (str) – prefix of fig save name

  • time (int or float) – summary logs whose time less than time

  • iteration (int) – summary logs whose iteration less than iteration

  • load_prefix (str) – the path in which each log is saved